Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Soo Yei Ho and Edward R. T. Tiekink*

Department of Chemistry, National University of
Singapore, Singapore 117543
Correspondence e-mail: chmtert@nus.edu.sg

Key indicators

Single-crystal X-ray study
$T=223 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.028$
$w R$ factor $=0.064$
Data-to-parameter ratio $=24.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Chloro[tris(p-methoxyphenyl)phosphine]gold(I)

The Au atom in the title compound, $\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{PAuCl}$ or $\left[\mathrm{AuCl}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{P}\right)\right]$, exhibits a linear geometry so that the $\mathrm{Au}-$ Cl bond length is 2.2885 (9) $\AA, \mathrm{Au}-\mathrm{P}$ is 2.2333 (8) \AA and the angle at gold is 175.94 (3) ${ }^{\circ}$.

Comment

As expected, an effectively linear geometry is found for the Au atom in $\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{PAuCl}$, (I) (Fig. 1), with the angle at gold being 175.94 (3) ${ }^{\circ}$. The $\mathrm{Au}-\mathrm{Cl}$ and $\mathrm{Au}-\mathrm{P}$ distances in (I) are 2.2885 (9) and 2.2333 (8) \AA, respectively. The Au donor atom parameters found in (I) are equal, within experimental error, to those found in the unsubstituted analogue, viz. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PAuCl}$ (Baenziger et al., 1976), for which the $\mathrm{Au}-\mathrm{Cl}$ and $\mathrm{Au}-\mathrm{P}$ distances are 2.279 (3) and 2.235 (3) \AA, respectively. The aromatic rings are almost symmetrically disposed as seen in the sequence of dihedral angles of 68.76 (16), 73.48 (16) and $78.66(15)^{\circ}$ for the $\mathrm{C} 1-\mathrm{C} 6, \mathrm{C} 8-\mathrm{C} 13$ and $\mathrm{C} 15-$ C20 rings, respectively. There is no evidence for $\pi \ldots \pi$ interactions in the lattice but arguably there are two $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts involving methyl-H atoms of note. Thus, $\mathrm{C} 7-\mathrm{H} 7 \mathrm{c}$ is $3.07 \AA$ from the ring centroid of $\mathrm{C} 8^{\mathrm{i}}-\mathrm{C} 13^{\mathrm{i}}$ with an angle at $\mathrm{H} 7 c$ of 175° [symmetry code: (i) $1-x, y, \frac{1}{2}-z$]. Similarly, C14$\mathrm{H} 14 b$ is $3.09 \AA$ from the ring centroid of $\mathrm{C} 1^{\mathrm{ii}}-\mathrm{C} 6^{\mathrm{ii}}$ with 166° being the angle at the $\mathrm{H} 14 b$ atom [symmetry code: (ii) $\frac{1}{2}-x$, $\left.-\frac{1}{2}+y, \frac{1}{2}-z\right]$. A close $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact is also noted, so that $\mathrm{C} 14-\mathrm{H} 14 a$ is $2.58 \AA$ from O3 ${ }^{\text {iii }}$ with a $\mathrm{C} 14 \cdots \mathrm{O} 3^{\text {iii }}$ distance of 3.430 (5) \AA, and the angle subtended at $\mathrm{H} 14 a$ is 146°; [symmetry code: (iii) $\frac{1}{2}+x,-\frac{1}{2}-y, \frac{1}{2}+z$].

(I)

Experimental

The title compound was prepared from the reaction between $\mathrm{HAuCl}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$ (Strem Chemicals Inc.) in accord with the literature procedure of Al-Saády et al. (1985) and had spectroscopic characteristics as reported in the literature (Decker et al., 1999). Colourless crystals were obtained from the layering of ethanol into a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the compound.

Figure 1
The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).

Crystal data

$\left[\mathrm{AuCl}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{P}\right)\right]$
$M_{r}=584.76$
Monoclinic, C2/c
$a=14.2875$ (4) £
$b=14.5396$ (4) \AA
$c=20.2212$ (6) A
$\beta=101.504(1)^{\circ}$
$V=4116.3(2) \AA^{3}$
$Z=8$

Data collection

Bruker SMART CCD	6001 independent reflections
\quad diffractometer	4896 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.040$
Absorption correction: empirical	$\theta_{\max }=30.0^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2000 $)$	$h=-18 \rightarrow 20$
$T_{\min }=0.114, T_{\max }=0.478$	$k=-18 \rightarrow 20$
16893 measured reflections	$l=-28 \rightarrow 27$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.064$
$S=0.95$
6001 reflections
245 parameters

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0317 P)^{2}\right]
$$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=1.38 \mathrm{e}_{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\min }=-0.71 \mathrm{e}^{-3}$

The C-bound H atoms were placed in geometrically calculated positions and included in the final refinement as riding with an overall displacement parameter, $U_{\text {iso }}$, with $U_{\text {iso }}$ for CH and $1.5 U_{\text {iso }}$ for CH_{3}. The residual electron-density peak is located in the vicinity of the Au atom.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXTL.

The National University of Singapore is thanked for the award of a research grant (R-143-000-139-112).

References

Al-Saády, A. K., McAuliffe, C. A., Parish, R. V. \& Sandbank, J. A. (1985). Inorg. Synth. 23, 191-194.
Baenziger, N. C., Bennett, W. E. \& Soborofe, D. M. (1976). Acta Cryst. B32, 962-963.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bruker (2000). SMART (Version 5.6), SAINT (Version 5.6), SHELXTL (Version 5.6) and $S A D A B S$ (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Decker, C., Henderson, W. \& Nicholson, B. K. J. (1999). J. Chem. Soc. Dalton Trans. pp. 3501-3513.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

